
Chapter 5: Advanced Picture Techniques

Tuning our color replacement
If you want to get more of Barb’s hair, just increasing

the threshold doesn’t work
Wood behind becomes within the threshold value

How could we do it better?
Lower our threshold, but then miss some of the hair
Work only within a range…

Replacing colors
in a range

def turnRedInRange():
 brown = makeColor(57,16,8)
 file=“/Users/guzdial/mediasources/barbara.jpg"
 picture=makePicture(file)
 for x in range(70,168):
 for y in range(56,190):
 px=getPixel(picture,x,y)
 color = getColor(px)
 if distance(color,brown)<50.0:
 redness=getRed(px)*1.5
 setRed(px,redness)
 show(picture)
 return(picture)

Get the range
using
MediaTools

Walking this code
Like last time: Don’t need input, same color we want

to change, same file, make a picture

def turnRedInRange():
 brown = makeColor(57,16,8)
 file=“/Users/guzdial/mediasources/barbara.jpg"
 picture=makePicture(file)
 for x in range(70,168):
 for y in range(56,190):
 px=getPixel(picture,x,y)
 color = getColor(px)
 if distance(color,brown)<50.0:
 redness=getRed(px)*1.5
 setRed(px,redness)
 show(picture)
 return(picture)

The nested loop
I used MediaTools to find the rectangle where most of

the hair is that I want to change

def turnRedInRange():
 brown = makeColor(57,16,8)
 file=“/Users/guzdial/mediasources/barbara.jpg“
 picture=makePicture(file)

 for x in range(70,168):
 for y in range(56,190):
 px=getPixel(picture,x,y)
 color = getColor(px)
 if distance(color,brown)<50.0:
 redness=getRed(px)*1.5
 setRed(px,redness)
 show(picture)
 return(picture)

Same thing as last time
(could raise threshold now)
Then we’re looking for a close-match on hair color,

and increasing the redness

def turnRedInRange():
 brown = makeColor(57,16,8)
 file=“/Users/guzdial/mediasources/barbara.jpg“
 picture=makePicture(file)
 for x in range(70,168):
 for y in range(56,190):

 px=getPixel(picture,x,y)
 color = getColor(px)
 if distance(color,brown)<50.0:
 redness=getRed(px)*1.5
 setRed(px,redness)
 show(picture)
 return(picture)

Could we do this without
nested loops?
Yes, but

complicated
IF

def turnRedInRange2():
 brown = makeColor(57,16,8)
 file=“/Users/guzdial/mediasources/barbara.jpg“
 picture=makePicture(file)
 for p in getPixels(picture):
 x = getX(p)
 y = getY(p)
 if x >= 70 and x < 168:
 if y >=56 and y < 190:
 color = getColor(p)
 if distance(color,brown)<100.0:
 redness=getRed(p)*2.0
 setRed(p,redness)
 show(picture)
 return picture

Working on Katie’s Hair
def turnRed():
 brown = makeColor(42,25,15)
 file="C:/ip-book/mediasources/katieFancy.jpg"
 picture=makePicture(file)
 for px in getPixels(picture):
 color = getColor(px)
 if distance(color,brown)<50.0:
 redness=int(getRed(px)*2)
 blueness=getBlue(px)
 greenness=getGreen(px)
 setColor(px,makeColor(redness,blueness,greenness))
 show(picture)
 return(picture)

This version
doubles all
“close” reds.
Notice the couch.

Working on Katie’s hair,
in a range

def turnRedInRange():
 brown = makeColor(42,25,15)
 file="C:/ip-book/mediasources/katieFancy.jpg"
 picture=makePicture(file)
 for x in range(63,125):
 for y in range(6,76):
 px=getPixel(picture,x,y)
 color = getColor(px)
 if distance(color,brown)<50.0:
 redness=int(getRed(px)*2)
 blueness=getBlue(px)
 greenness=getGreen(px)
 setColor(px,makeColor(redness,blueness,greenness))
 show(picture)
 return(picture)

Left is one we did with
all “close” browns.
Right is same, but only
in rect around head.

Removing “Red Eye”
When the flash of the camera

catches the eye just right
(especially with light colored
eyes), we get bounce back
from the back of the retina.

This results in “red eye”
We can replace the “red” with

a color of our choosing.
First, we figure out where the

eyes are (x,y) using
MediaTools

Removing Red Eye
def removeRedEye(pic,startX,startY,endX,endY,replacementcolor):
 red = makeColor(255,0,0)
 for x in range(startX,endX):
 for y in range(startY,endY):
 currentPixel = getPixel(pic,x,y)
 if (distance(red,getColor(currentPixel)) < 165):
 setColor(currentPixel,replacementcolor)

What we’re doing here:

• Within the rectangle of pixels (startX,startY)
to (endX, endY)

• Find pixels close to red, then replace them
with a new color

Why use a
range? Because
we don’t want to
replace her red
dress!

“Fixing” it: Changing red to black
removeRedEye(jenny, 109,

91, 202, 107,
makeColor(0,0,0))

Jenny’s eyes are actually
not black—could fix that

Eye are also not mono-
color
 A better function would handle

gradations of red and replace with
gradations of the right eye color

Replacing colors using IF
We don’t have to do one-to-one changes or

replacements of color
We can use if to decide if we want to make a change.

We could look for a range of colors, or one specific
color.

We could use an operation (like multiplication) to set
the new color, or we can set it to a specific value.

It all depends on the effect that we want.

Posterizing:
Reducing range
of colors

Posterizing: How we do it
We look for a range of colors, then map them to a

single color.
If red is between 63 and 128, set it to 95
If green is less than 64, set it to 31
...

It requires a lot of if statements, but it’s really pretty
simple.

The end result is that a bunch of different colors, get
set to a few colors.

Posterizing function
def posterize(picture):
 #loop through the pixels
 for p in getPixels(picture):
 #get the RGB values
 red = getRed(p)
 green = getGreen(p)
 blue = getBlue(p)

 #check and set red values
 if(red < 64):
 setRed(p, 31)
 if(red > 63 and red < 128):
 setRed(p, 95)
 if(red > 127 and red < 192):
 setRed(p, 159)
 if(red > 191 and red < 256):
 setRed(p, 223)

 #check and set green values
 if(green < 64):
 setGreen(p, 31)
 if(green > 63 and green < 128):
 setGreen(p, 95)
 if(green > 127 and green < 192):
 setGreen(p, 159)
 if(green > 191 and green < 256):
 setGreen(p, 223)

 #check and set blue values
 if(blue < 64):
 setBlue(p, 31)
 if(blue > 63 and blue < 128):
 setBlue(p, 95)
 if(blue > 127 and blue < 192):
 setBlue(p, 159)
 if(blue > 191 and blue < 256):
 setBlue(p, 223)

What’s with this “#” stuff?
Any line that starts with a “#” is ignored by Python.
This allows you to insert comments: Notes to yourself

(or another programmer) that explains what’s going
on here.
When programs get longer, there are lots of pieces to

them, and it’s hard to figure out what each piece does.
Comments can help.

Posterizing to b/w levels
def grayPosterize(pic):
 for p in getPixels(pic):
 r = getRed(p)
 g = getGreen(p)
 b = getBlue(p)
 luminance = (r+g+b)/3
 if luminance < 64:
 setColor(p,black)
 if luminance >= 64:
 setColor(p,white)

We check
luminance on
each pixel.
If it’s low enough,
it’s black, and
Otherwise, it’s
white

Generating sepia-toned prints
Pictures that are sepia-toned have a yellowish tint to

them that we associate with older pictures.
It’s not directly a matter of simply increasing the

yellow in the picture, because it’s not a one-to-one
correspondence.
Instead, colors in different ranges get mapped to other

colors.
We can create such a mapping using IF

Example of sepia-toned prints

Here’s how we do it
def sepiaTint(picture):
 #Convert image to greyscale
 greyScaleNew(picture)

 #loop through picture to tint pixels
 for p in getPixels(picture):
 red = getRed(p)
 blue = getBlue(p)

 #tint shadows
 if (red < 63):
 red = red*1.1
 blue = blue*0.9

 #tint midtones
 if (red > 62 and red < 192):
 red = red*1.15
 blue = blue*0.85

 #tint highlights
 if (red > 191):
 red = red*1.08
 if (red > 255):
 red = 255

 blue = blue*0.93

 #set the new color values
 setBlue(p, blue)
 setRed(p, red)

What’s going on here?
First, we’re calling greyScaleNew (the one with

weights).
 It’s perfectly okay to have one function calling another.

We then manipulate the red (increasing) and the blue
(decreasing) channels to bring out more yellows and
oranges.
 Why are we doing the comparisons on the red? Why not? After greyscale

conversion, all channels are the same!

Why these values? Trial-and-error: Twiddling the
values until it looks the way that you want.

Blurring
When we scale up pictures

(make them bigger), we get
sharp lines and boxes:
pixelation.

Can reduce that by
purposefully blurring the
image.
One simple algorithm: Take

the pixels left, right, bottom,
and top of yours. Average the
colors.

Blurring code
def blur(filename):
 source=makePicture(filename)
 target=makePicture(filename)
 for x in range(0, getWidth(source)-1):
 for y in range(0, getHeight(source)-1):
 top = getPixel(source,x,y-1)
 left = getPixel(source,x-1,y)
 bottom = getPixel(source,x,y+1)
 right = getPixel(source,x+1,y)
 center = getPixel(target,x,y)
 newRed=(getRed(top)+ getRed(left)+ getRed(bottom)+getRed(right)+ getRed(center))/5
 newGreen=(getGreen(top)+ getGreen(left)+getGreen(bottom)+getGreen(right)

+getGreen(center))/5
 newBlue=(getBlue(top)+ getBlue(left)+ getBlue(bottom)+getBlue(right)+ getBlue(center))/5
 setColor(center, makeColor(newRed, newGreen, newBlue))
 return target

We make two copies
of the picture.
We read pixel colors
from one, and set
them in the other.

Edge Detection
Blurring is averaging across pixels.
Edge detection is looking for differences between

pixels.
We draw lines that our eyes see—where the luminance

changes.
If the pixel changes left-to-right, up and down, then

we make our pixel black. Else white.

Edge
Detection
def lineDetect(filename):
 orig = makePicture(filename)
 makeBw = makePicture(filename)
 for x in range(0,getWidth(orig)-1):
 for y in range(0,getHeight(orig)-1):
 here=getPixel(makeBw,x,y)
 down=getPixel(orig,x,y+1)
 right=getPixel(orig,x+1,y)
 hereL=(getRed(here)+getGreen(here)+getBlue(here))/3
 downL=(getRed(down)+getGreen(down)+getBlue(down))/3
 rightL=(getRed(right)+getGreen(right)+getBlue(right))/3
 if abs(hereL-downL)>10 and abs(hereL-rightL)>10:
 setColor(here,black)
 if abs(hereL-downL)<=10 and abs(hereL-rightL)<=10:
 setColor(here,white)
 return makeBw

Notice the use of
absolute value
(abs) here. We
don’t care which
is larger. We
care about a
large difference.

Blending pictures
How do we get part of one picture and part of

another to blur together, so that we see some of each?
It’s about making one a bit “transparent.”
Video cards sometimes support this transparency in

hardware, called an alpha level to each pixel.
We do it as a weighted sum

If it’s 50-50, we take 50% of red of picture1’s pixels +
50% of red of picture2’s pixels, and so on for green and
blue, across all overlapping pixels.

Example blended picture

Blended here

Blending code (1 of 3)
def blendPictures():
 barb = makePicture(getMediaPath("barbara.jpg"))
 katie = makePicture(getMediaPath("Katie-smaller.jpg"))
 canvas = makePicture(getMediaPath("640x480.jpg"))
 #Copy first 150 columns of Barb
 sourceX=0
 for targetX in range(0,150):
 sourceY=0
 for targetY in range(0,getHeight(barb)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY),color)
 sourceY = sourceY + 1
 sourceX = sourceX + 1

Straightforward copy of
150 column’s of Barb’s
picture

Blending code (2 of 3)
 #Now, grab the rest of Barb and part of Katie
 # at 50% Barb and 50% Katie
 overlap = getWidth(barb)-150
 sourceX=0
 for targetX in range(150,getWidth(barb)):
 sourceY=0
 for targetY in range(0,getHeight(katie)):
 bPixel = getPixel(barb,sourceX+150,sourceY)
 kPixel = getPixel(katie,sourceX,sourceY)
 newRed= 0.50*getRed(bPixel)+0.50*getRed(kPixel)
 newGreen=0.50*getGreen(bPixel)+0.50*getGreen(kPixel)
 newBlue = 0.50*getBlue(bPixel)+0.50*getBlue(kPixel)
 color = makeColor(newRed,newGreen,newBlue)
 setColor(getPixel(canvas,targetX,targetY),color)
 sourceY = sourceY + 1
 sourceX = sourceX + 1

Here’s the
trick. For
each pixel,
grab 50% of
each red,
green and
blue

Blending code (3 of 3)
 # Last columns of Katie
 sourceX=overlap
 for targetX in range(150+overlap,150+getWidth(katie)):
 sourceY=0
 for targetY in range(0,getHeight(katie)):
 color = getColor(getPixel(katie,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY),color)
 sourceY = sourceY + 1
 sourceX = sourceX + 1
 show(canvas)
 return canvas

Background subtraction
Let’s say that you have a picture of someone, and a

picture of the same place (same background) without
the someone there, could you subtract out the
background and leave the picture of the person?

Maybe even change the background?

Let’s take that as our problem!

Person (Katie) and Background

Let’s put
Katie on
the moon!

Where do we start?
What we most need to do is to figure out whether the

pixel in the Person shot is the same as the in the
Background shot.

Will they be the EXACT same color? Probably not.
So, we’ll need some way of figuring out if two colors

are close…

Remember this?

def turnRed():
 brown = makeColor(57,16,8)
 file = r"C:\Documents and Settings\Mark Guzdial\My
Documents\mediasources\barbara.jpg"
 picture=makePicture(file)
 for px in getPixels(picture):
 color = getColor(px)
 if distance(color,brown)<50.0:
 redness=getRed(px)*1.5
 setRed(px,redness)
 show(picture)
 return(picture)

Original:

Using distance
So we know that we want to ask:

if distance(personColor,bgColor) > someValue
And what do we then?

We want to grab the color from another background (a
new background) at the same point.

Do we have any examples of doing that?

Copying Barb to a canvas
def copyBarb():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 targetX = 1
 for sourceX in range(1,getWidth(barb)):
 targetY = 1
 for sourceY in range(1,getHeight(barb)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Where we are so far:
if distance(personColor,bgColor) > someValue:
 bgcolor = getColor(getPixel(newBg,x,y))
 setColor(getPixel(person,x,y), bgcolor)

What else do we need?
 We need to get all these variables set up

 We need to input a person picture, a background (background
without person), and a new background.

 We need a loop where x and y are the right values
 We have to figure out personColor and bgColor

def swapbg(person, bg, newbg):
 for x in range(1,getWidth(person)):
 for y in range(1,getHeight(person)):
 personPixel = getPixel(person,x,y)
 bgpx = getPixel(bg,x,y)
 personColor= getColor(personPixel)
 bgColor = getColor(bgpx)
 if distance(personColor,bgColor) > someValue:
 bgcolor = getColor(getPixel(newbg,x,y))
 setColor(getPixel(person,x,y), bgcolor)

Simplifying a little,
and specifying a little

def swapbg(person, bg, newbg):
 for x in range(1,getWidth(person)):
 for y in range(1,getHeight(person)):
 personPixel = getPixel(person,x,y)
 bgpx = getPixel(bg,x,y)
 personColor= getColor(personPixel)
 bgColor = getColor(bgpx)
 if distance(personColor,bgColor) > 10:
 bgcolor = getColor(getPixel(newbg,x,y))
 setColor(personPixel, bgcolor)

Specifying a
threshold.

Using a
variable for
the person
pixel

Trying it with a jungle background

What happened?
It looks like we reversed the swap

If the distance is great, we want to KEEP the
pixel.

If the distance is small (it’s basically the same
thing), we want to get the NEW pixel.

Reversing the swap
def swapbg(person, bg, newbg):
 for x in range(1,getWidth(person)):
 for y in range(1,getHeight(person)):
 personPixel = getPixel(person,x,y)
 bgpx = getPixel(bg,x,y)
 personColor= getColor(personPixel)
 bgColor = getColor(bgpx)
 if distance(personColor,bgColor) < 10:
 bgcolor = getColor(getPixel(newbg,x,y))
 setColor(personPixel, bgcolor)

Better!

But why isn’t it alot better?
We’ve got places where

we got pixels swapped
that we didn’t want to
swap
 See Katie’s shirt stripes

We’ve got places where
we want pixels swapped,
but didn’t get them
swapped
 See where Katie made a shadow

How could we make it better?
What could we change in the program?

We could change the threshold “someValue”
If we increase it, we get fewer pixels matching

 That won’t help with the shadow
If we decrease it, we get more pixels matching

 That won’t help with the stripe

What could we change in the pictures?
Take them in better light, less shadow
Make sure that the person isn’t wearing clothes near

the background colors.

Another way: Chromakey
Have a background of

a known color
Some color that won’t be on

the person you want to mask
out

Pure green or pure blue is
most often used

 I used my son’s blue
bedsheet

This is how the
weather people seem to
be in front of a map—
they’re actually in front
of a blue sheet.

def chromakey(source,bg):
 # source should have something in front of blue, bg is the new
background
 for x in range(1,getWidth(source)):
 for y in range(1,getHeight(source)):
 p = getPixel(source,x,y)
 # My definition of blue: If the redness + greenness < blueness
 if (getRed(p) + getGreen(p) < getBlue(p)):
 #Then, grab the color at the same spot from the new background
 setColor(p,getColor(getPixel(bg,x,y)))

Can also do this with getPixels()
def chromakey2(source,bg):
 # source should have something in front of blue,
 # bg is the new background
 for p in getPixels(source):
 # My definition of blue: If the redness + greenness < blueness
 if (getRed(p) + getGreen(p) < getBlue(p)):
 #Then, grab the color at the same spot from the new background
 setColor(p,getColor(getPixel(bg,getX(p),getY(p))))

Just trying the obvious thing for Red
def chromakey2(source,bg):
 # source should have something in front of red, bg is the new background
 for p in getPixels(source):
 if getRed(p) > (getGreen(p) + getBlue(p)):
 #Then, grab the color at the same spot from the new background
 setColor(p,getColor(getPixel(bg,getX(p),getY(p))))

Doesn’t always work as you expect

Let’s try that with green
def chromakeyGreen(source,bg):
 # source should have something in front of green, bg is the new background
 for x in range(1,getWidth(source)):
 for y in range(1,getHeight(source)):
 p = getPixel(source,x,y)
 # My definition of green: If the greenness > redness + blueness
 if getGreen(p) > getBlue(p) + getRed(p):
 #Then, grab the color at the same spot from the new background
 setColor(p,getColor(getPixel(bg,x,y)))

The same definition of green doesn’t
work

Changes
only a few
pixels

What happened?
The towel isn’t just green

The green of the towel has lots of blue and red in it.
Use MediaTools to figure out a new rule that makes

sense.

def chromakeyGreen(source,bg):
 # source should have something in front of green, bg is the new background
 for x in range(1,getWidth(source)):
 for y in range(1,getHeight(source)):
 p = getPixel(source,x,y)
 # My definition of green: If the greenness > redness AND blueness
 if getGreen(p) > getBlue(p) and getGreen(p) > getRed(p):
 #Then, grab the color at the same spot from the new background
 setColor(p,getColor(getPixel(bg,x,y)))

That looks better

Drawing on images
Sometimes you want to draw on pictures,

to add something to the pictures.
Lines
Text
Circles and boxes.

We can do that pixel by pixel, setting black and white
pixels

Drawing lines
on Carolina

def lineExample():
 img = makePicture(pickAFile())
 verticalLines(img)
 horizontalLines(img)
 show(img)
 return img

def horizontalLines(src):
 for x in range(0,getHeight(src),5):
 for y in range(0,getWidth(src)):

 setColor(getPixel(src,y,x),black)

def verticalLines(src):
 for x in range(0,getWidth(src),5):
 for y in range(0,getHeight(src)):

 setColor(getPixel(src,x,y),black)
We can use the color name “black”
– it’s pre-defined for us.

Yes, some colors are already defined
Colors defined for you already: black, white, blue,

red, green, gray, lightGray, darkGray, yellow,
orange, pink, magenta, and cyan

That’s tedious
That’s slow and tedious to set every pixel you want to

make lines and text, etc.
What you really want to do is to think in terms of

your desired effect (think about “requirements” and
“design”)

New functions
addText(pict,x,y,string) puts the string starting at

position (x,y) in the picture
addLine(picture,x1,y1,x2,y2) draws a line from

position (x1,y1) to (x2,y2)
addRect(pict,x1,y1,w,h) draws a black rectangle

(unfilled) with the upper left hand corner of (x1,y1)
and a width of w and height of h

addRectFilled(pict,x1,y1,w,h,color) draws a
rectangle filled with the color of your choice with the
upper left hand corner of (x1,y1) and a width of w and
height of h

The mysterious red box on the
beach
def addABox():
 beach = makePicture(getMediaPath("beach-smaller.jpg"))
 addRectFilled(beach,150,150,50,50,red)
 show(beach)
 return beach

Example picture
def littlepicture():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 addText(canvas,10,50,"This is not a picture")
 addLine(canvas,10,20,300,50)
 addRectFilled(canvas,0,200,300,500,yellow)
 addRect(canvas,10,210,290,490)
 return canvas

A thought experiment
Look at that previous page: Which has a fewer

number of bytes?
The program that drew the picture
The pixels in the picture itself.

It’s a no-brainer
The program is less than 100 characters (100 bytes)
The picture is stored on disk at about 15,000 bytes

Vector-based vs.
Bitmap Graphical representations
Vector-based graphical representations are basically

executable programs that generate the picture on
demand.
Postscript, Flash, and AutoCAD use vector-based

representations
Bitmap graphical representations (like JPEG, BMP,

GIF) store individual pixels or representations of
those pixels.
JPEG and GIF are actually compressed representations

Vector-based representations can be
smaller
Vector-based representations can be much smaller

than bit-mapped representations
Smaller means faster transmission (Flash and

Postscript)
If you want all the detail of a complex picture, no, it’s

not.

But vector-based has more value than that

Imagine that you’re editing a picture with lines on it.
 If you edit a bitmap image and extend a line, it’s just more bits.

 There’s no way to really realize that you’ve extended or shrunk
the line.

 If you edit a vector-based image, it’s possible to just change the
specification
 Change the numbers saying where the line is
 Then it really is the same line

That’s important when the picture drives the creation
of the product, like in automatic cutting machines

How are images compressed?
Sometimes lossless using techniques like run length

encoding (RLE)
Instead of this:

B B Y Y Y Y Y Y Y Y Y B B
We could say “9 Y’s” like this:

B B 9 Y B B
Lossy compression (like JPEG and GIF) loses detail, some

of which is invisible to the eye.

When changing the picture means changing a
program…
In a vector-based drawing package, changing the

drawing is changing a program.
How could we reach in and change the actual

program?
We can using string manipulation

The program is just a string of characters
We want to manipulate those characters, in order to

manipulate the program

Example programmed graphic
If I did this right, we

perceive the left half as
lighter than the right
half

In reality, the end
quarters are actually the
same colors.

Building a programmed graphic
def greyEffect():
 file = getMediaPath("640x480.jpg")
 pic = makePicture(file)
 # First, 100 columns of 100-grey
 grey = makeColor(100,100,100)
 for x in range(1,100):
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 # Second, 100 columns of increasing greyness
 greyLevel = 100
 for x in range(100,200):
 grey = makeColor(greyLevel, greyLevel,
greyLevel)
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 greyLevel = greyLevel + 1

Third, 100 colums of increasing greyness, from
0
 greyLevel = 0
 for x in range(200,300):
 grey = makeColor(greyLevel, greyLevel,
greyLevel)
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 greyLevel = greyLevel + 1
 # Finally, 100 columns of 100-grey
 grey = makeColor(100,100,100)
 for x in range(300,400):
 for y in range(1,100):
 setColor(getPixel(pic,x,y),grey)
 return pic

Another Programmed Graphic
def coolpic():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 for index in range(25,1,-1):
 color = makeColor(index*10,index*5,index)
 addRectFilled(canvas,0,0,index*10,index*10,color)
 show(canvas)
 return canvas

And another
def coolpic2():
 canvas=makePicture(getMediaPath("640x480.jpg"))
 for index in range(25,1,-1):
 addRect(canvas,index,index,index*3,index*4)
 addRect(canvas,100+index*4,100+index*3,index*8,index*10)
 show(canvas)
 return canvas

Why do we write programs?
Could we do this in Photoshop? Maybe

I’m sure that you can, but you need to know how.
Could I teach you to do this in Photoshop? Maybe

Might take a lot of demonstration
But this program is an exact definition of the process

of generating this picture
It works for anyone who can run the program, without

knowing Photoshop

We write programs to encapsulate and
communicate process
If you can do it by hand, do it.
If you need to teach someone else to do it, consider a

program.
If you need to explain to lots of people how to do it,

definitely use a program.
If you want lots of people to do it without having to

teach them something first, definitely use a program.

	Introduction to Computing and Programming in Python: A Multimedia Approach
	Chapter Objectives
	Tuning our color replacement
	Replacing colors in a range
	Walking this code
	The nested loop
	Same thing as last time (could raise threshold now)
	Could we do this without nested loops?
	Working on Katie’s Hair
	Working on Katie’s hair, in a range
	Removing “Red Eye”
	Removing Red Eye
	“Fixing” it: Changing red to black
	Replacing colors using IF
	Posterizing: Reducing range of colors
	Posterizing: How we do it
	Posterizing function
	What’s with this “#” stuff?
	Posterizing to b/w levels
	Generating sepia-toned prints
	Example of sepia-toned prints
	Here’s how we do it
	What’s going on here?
	Blurring
	Blurring code
	Edge Detection
	Slide 27
	Blending pictures
	Example blended picture
	Blending code (1 of 3)
	Blending code (2 of 3)
	Blending code (3 of 3)
	Background subtraction
	Person (Katie) and Background
	Where do we start?
	Remember this?
	Using distance
	Copying Barb to a canvas
	Where we are so far:
	Swap a background using background subtraction
	Simplifying a little, and specifying a little
	Trying it with a jungle background
	What happened?
	Reversing the swap
	Better!
	But why isn’t it alot better?
	How could we make it better?
	Another way: Chromakey
	Chromakey recipe
	Can also do this with getPixels()
	Example results
	Just trying the obvious thing for Red
	Doesn’t always work as you expect
	Let’s try that with green
	The same definition of green doesn’t work
	Slide 56
	Tweaking Chromakey
	That looks better
	Drawing on images
	Drawing lines on Carolina
	Yes, some colors are already defined
	That’s tedious
	New functions
	The mysterious red box on the beach
	Example picture
	A thought experiment
	Vector-based vs. Bitmap Graphical representations
	Vector-based representations can be smaller
	But vector-based has more value than that
	How are images compressed?
	When changing the picture means changing a program…
	Example programmed graphic
	Building a programmed graphic
	Another Programmed Graphic
	And another
	Why do we write programs?
	We write programs to encapsulate and communicate process

